Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High vertical yield InP nanowire growth on Si(111) using a thin buffer layer

Identifieur interne : 000C01 ( Main/Repository ); précédent : 000C00; suivant : 000C02

High vertical yield InP nanowire growth on Si(111) using a thin buffer layer

Auteurs : RBID : Pascal:14-0018796

Descripteurs français

English descriptors

Abstract

We demonstrate the growth of InP nanowires on Si(111) using a thin InP buffer layer. The buffer layer is grown using a two-step procedure. The initial layer formation is ensured by using a very low growth temperature. An extremely high V/III ratio is necessary to prevent In droplet formation at this low temperature. The second layer is grown on the initial layer at a higher temperature and we find that post-growth annealing of the buffer layer does not improve its crystal quality significantly. It is found that the layers inherently have the (111)B polarity. Nanowires grown on this buffer layer have the same morphology and optical properties as nanowires grown on InP (111)B substrates. The vertical yield of the nanowires grown on the buffer layer is over 97% and we also find that crystal defects in the buffer layer do not affect the morphology, vertical yield or optical properties of the nanowires significantly.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0018796

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">High vertical yield InP nanowire growth on Si(111) using a thin buffer layer</title>
<author>
<name sortKey="Fonseka, H A" uniqKey="Fonseka H">H. A. Fonseka</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tan, H H" uniqKey="Tan H">H. H. Tan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wong Leung, J" uniqKey="Wong Leung J">J. Wong-Leung</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 0200</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre for Advanced Microscopy, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kang, J H" uniqKey="Kang J">J. H. Kang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parkinson, P" uniqKey="Parkinson P">P. Parkinson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jagadish, C" uniqKey="Jagadish C">C. Jagadish</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Canberra, ACT 0200</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0018796</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0018796 INIST</idno>
<idno type="RBID">Pascal:14-0018796</idno>
<idno type="wicri:Area/Main/Corpus">000321</idno>
<idno type="wicri:Area/Main/Repository">000C01</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0957-4484</idno>
<title level="j" type="abbreviated">Nanotechnology : (Bristol, Print)</title>
<title level="j" type="main">Nanotechnology : (Bristol. Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Buffer layer</term>
<term>Crystal defects</term>
<term>Crystal perfection</term>
<term>Droplets</term>
<term>Experimental design</term>
<term>Growth mechanism</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Morphology</term>
<term>Nanomaterial synthesis</term>
<term>Nanostructured materials</term>
<term>Nanowires</term>
<term>Optical properties</term>
<term>Polarity</term>
<term>Very low temperature</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Synthèse nanomatériau</term>
<term>Couche tampon</term>
<term>Mécanisme croissance</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Très basse température</term>
<term>Gouttelette</term>
<term>Recuit</term>
<term>Plan expérience</term>
<term>Perfection cristalline</term>
<term>Polarité</term>
<term>Morphologie</term>
<term>Propriété optique</term>
<term>Défaut cristallin</term>
<term>InP</term>
<term>Substrat silicium</term>
<term>Substrat indium phosphure</term>
<term>Substrat InP</term>
<term>8116</term>
<term>8107V</term>
<term>8107B</term>
<term>6865</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We demonstrate the growth of InP nanowires on Si(111) using a thin InP buffer layer. The buffer layer is grown using a two-step procedure. The initial layer formation is ensured by using a very low growth temperature. An extremely high V/III ratio is necessary to prevent In droplet formation at this low temperature. The second layer is grown on the initial layer at a higher temperature and we find that post-growth annealing of the buffer layer does not improve its crystal quality significantly. It is found that the layers inherently have the (111)B polarity. Nanowires grown on this buffer layer have the same morphology and optical properties as nanowires grown on InP (111)B substrates. The vertical yield of the nanowires grown on the buffer layer is over 97% and we also find that crystal defects in the buffer layer do not affect the morphology, vertical yield or optical properties of the nanowires significantly.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4484</s0>
</fA01>
<fA03 i2="1">
<s0>Nanotechnology : (Bristol, Print)</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>46</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>High vertical yield InP nanowire growth on Si(111) using a thin buffer layer</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FONSEKA (H. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TAN (H. H.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WONG-LEUNG (J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KANG (J. H.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PARKINSON (P.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>JAGADISH (C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Centre for Advanced Microscopy, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s2>465602.1-465602.9</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22480</s2>
<s5>354000504265100160</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>51 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0018796</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nanotechnology : (Bristol. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We demonstrate the growth of InP nanowires on Si(111) using a thin InP buffer layer. The buffer layer is grown using a two-step procedure. The initial layer formation is ensured by using a very low growth temperature. An extremely high V/III ratio is necessary to prevent In droplet formation at this low temperature. The second layer is grown on the initial layer at a higher temperature and we find that post-growth annealing of the buffer layer does not improve its crystal quality significantly. It is found that the layers inherently have the (111)B polarity. Nanowires grown on this buffer layer have the same morphology and optical properties as nanowires grown on InP (111)B substrates. The vertical yield of the nanowires grown on the buffer layer is over 97% and we also find that crystal defects in the buffer layer do not affect the morphology, vertical yield or optical properties of the nanowires significantly.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A16</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60H65</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Couche tampon</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Buffer layer</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Capa tampón</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Très basse température</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Very low temperature</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Temperatura muy baja</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Gouttelette</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Droplets</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Recuit</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Annealing</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Plan expérience</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Experimental design</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Perfection cristalline</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Crystal perfection</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Perfección cristalina</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Polarité</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Polarity</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Polaridad</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Morphologie</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Morphology</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Défaut cristallin</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Crystal defects</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Substrat silicium</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Substrat indium phosphure</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Substrat InP</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8116</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>6865</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>020</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C01 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000C01 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0018796
   |texte=   High vertical yield InP nanowire growth on Si(111) using a thin buffer layer
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024